
Solving of Hacker Challenge 2007 Phase 3
Author: Omega Red (omegared@o2.pl)

Attack Narrative

Finding the password and the formula

When we first run the executable, it produces truncated output. A password is required, but

we’re not told as in what form it should be delivered to the executable. To find out, author used

Process Monitor from Sysinternals.

69269 21:57:48.8726820 final.exe 2284 CreateFile C:\hc3\data.txt SUCCESS

 Desired Access: Generic Read, Disposition: Open, Options: Synchronous IO Non-Alert,

Non-Directory File, Attributes: N, ShareMode: Read, Write, AllocationSize: n/a,

OpenResult: Opened

69270 21:57:48.8727534 final.exe 2284 ReadFile C:\hc3\data.txt SUCCESS

 Offset: 0, Length: 152

69272 21:57:48.8728270 final.exe 2284 CloseFile C:\hc3\data.txt SUCCESS

It seems that our target only reads data.txt, it doesn’t touch other files or registry or

anything else. That would imply that the password should be in data.txt. But in what form should it

be? That’s the first real problem.

Let’s load the exe to IDA. Surprise, it doesn’t look like packed/encrypted at first glance. The

main function is larger and more complex than in phase 1 though. We see IsDebuggerPresent

calls, GetTickCount, QueryPerformanceCounter – obvious anti-debug measures. And then in the

middle of main there is a block of garbage data starting at 00402D54. Oh, encryption after all ;).

Time to load it into Olly.

We place breakpoint at the transition to encrypted code:
.text:00402D4D jmp short loc_402D54

and trace main stepping over all functions. We notice that after call 00401C20 there is some kind

of checksumming performed:

00402C46 . 0FB7C8 movzx ecx,ax

00402C49 . 81F9 80040000 cmp ecx,480

00402C4F . 74 07 je short final_or.00402C58

00402C51 . 6A 00 push 0

00402C53 . E8 81AC0000 call <final_or.EXIT>

00402C58 > EB 05 jmp short final_or.00402C5F

The checksum is wrong and program exits. Let’s see what’s inside the call. Calls to

VirtualProtect and some number crunching? Decryption routine. It also calls some other

functions at the beginning. Since it’s important procedure, we examine these functions. First of

them, at 00401D80, is a nice anti-debug trick involving int 2d – the windows kernel debugger API

as described by ReWolf. This function creates SEH frame and issues int 2d. In normal conditions,

int command will cause exception and transition to the SEH handler, which in turn changes

faulting thread’s context – it moves value 0 to ebx register. We see a “mov ebx, 1” instruction just

before int 2d – so under debugger, when no exception is called, ebx will contain 1 at the end of

the procedure. This is used to alter some variables used during calculations, corrupting results in the

process. How to defeat it? Simply change “mov ebx, 1” to “mov ebx, 0” at 401dc5 and nop out

the int 2d. Voila, the function now always returns 0 (“not debugged”).

 Second sub-function called in decryption routine is very similar anti-debug routine, just it

uses trap flag to trigger exception:

00401BB5 |. B8 01000000 mov eax,1

00401BBA |. 9C pushfd

00401BBB |. 813424 54010000 xor dword ptr ss:[esp],154

00401BC2 |. 9D popfd

00401BC3 |. 0AC0 or al,al

SEH handler installed at the beginning of this function also changes context, this time modifying

eax to be 0. As we see, the scheme is almost identical as before. We patch it in the same manner:

changing mov eax, 1 to mov eax, 0. Good, both of them should be neutralized.

Now we observe the VirtualProtect call and its arguments – it will tell us what region of code is

being decrypted. There are 3 decrypt calls in total. First one decrypts code @ 402d50 of size 0xDC

bytes. That’s right where our “garbage bytes” are. Now after we “fixed” anti-debug routines,

checksum after decryption is OK. Good. Next we see another checksum calculations @ around

402c98. For now it returns good value, but we note it in case we need to patch it. Next we have

IsDebuggerPresent call easily fooled by OllyAdvanced. After it there is a second call to

decryption routine (address 402f20, size 0xE0). This area is located a bit further from first

encrypted block. Quick glance at it after decryption doesn’t give any immediate clues on what it

does, but its role will be apparent later.

Next we have GetTickCount trick and third, final decryption call (address 401ef0, size 0xF0).

Look at the decrypted instructions – oh, some calculations with floating point math and a call to

trap-flag anti-debug! Suspicious, maybe this is the function that calculates our needed value? We’ll

verify it later.

Now we’ll dump all decrypted memory sections and patch the executable to make static analysis

easier. We’ll also nop out the “mov [esi], edx” instruction at 00401C73, this will disable

decryptor (since code will be already decrypted by us). Quick test after patching: program outputs

wrong results. We recall noticing a checksum calculation at 402c98 – now we can see that it returns

wrong value ;). We patch jump at 402c9e to unconditional. Result? Wrong values again, but this

time different ones. Ouch.

Let’s just manually scan main disassembly in IDA and look for suspicious instruction blocks. With

this approach we can find what follows:

.text:004034D6 xor eax, eax

.text:004034D8 mov ecx, (offset loc_402C5A+2)

.text:004034DD mov edx, 2Ah

.text:004034E2

.text:004034E2 loc_4034E2: ; CODE

XREF: .text:004034ED�j

.text:004034E2 movzx esi, word ptr [ecx]

.text:004034E5 add eax, esi

.text:004034E7 add ecx, 2

.text:004034EA sub edx, 1

.text:004034ED jnz short loc_4034E2

.text:004034EF mov ecx, eax

.text:004034F1 shr ecx, 10h

.text:004034F4 jz short loc_403502

.text:004034F6

.text:004034F6 loc_4034F6: ; CODE

XREF: .text:00403500�j

.text:004034F6 movzx eax, ax

.text:004034F9 add eax, ecx

.text:004034FB mov ecx, eax

.text:004034FD shr ecx, 10h

.text:00403500 jnz short loc_4034F6

.text:00403502

.text:00403502 loc_403502: ; CODE

XREF: .text:004034F4�j

.text:00403502 not eax

.text:00403504 movzx eax, ax

.text:00403507 movzx ecx, ax

.text:0040350A test ecx, ecx

.text:0040350C jz short loc_403515

.text:0040350E add dword_42DD50, 1

.text:00403515

.text:00403515 loc_403515: ; CODE

XREF: .text:0040350C�j

A checksum routine similar to what we’ve seen before. If it fails, a global variable is modified.

Let’s patch jump at 0040350C to unconditional. Finally! The executable now produces correct

output. Let’s continue the analysis of main.

After that there is a call pair of QueryPerformanceFrequency / QueryPerformanceCounter.

Another timing trick? Doh. This time OllyAdvanced won’t help us, so we’ll need to be careful

when debugging.

Finally we reach the first decrypted code block. What does it do? Let’s trace and see. ;)

At the beginning of it there are 2 calls to some private functions. First one takes 2 arguments,

apparently pointers to stack variables. After comparing their (variables) content before and after call,

we see that the one pointed by eax contains ASCII “1” after call. Hmpf. Let’s move on. There is

another call with more parameters – constants “0a” (newline?), 0x3e8, and another two stack

pointers. And after this call we see that “eax variable” contains more ASCII numbers. Now it’s

clear that the first call was reading first “word” from data.txt (number 1 in case of original file),

and the second – rest of the line. Good. What do we have next? Some number crunching that

operates on the first read buffer! It reads 12 characters from it in 4 turns of 3 bytes, produces 4

byte result and compares it with “4242” string. Operations are fairly trivial, they can be reduced to

sum of 3 chars modulo 0x100 (if byte values don’t exceed 0x7f) for every byte of output. Sample

string that meets those requirements is “omega~redG]f”. This must be the password we’re looking

for ;). Indeed, when we insert such string as first line of data.txt, executable produces full and

correct output.

After password check we see second call to QueryPerformanceCounter. Then some math that

seems to calculate number of seconds elapsed between first call and this one. This number is then

compared to 0.1 – if it’s less, all is OK and we’re not traced ;). We can just flip the flag on

comparison during debugging, as it doesn’t matter when run without debugger.

00402E70 . DC1D 00854200 fcomp qword ptr ds:[428500]

00402E76 . DFE0 fstsw ax

00402E78 . F6C4 05 test ah,5

00402E7B . 7B 45 jpo short final_or.00402EC2

Manual tracing further gives us headache, there is too much code to swallow. Let’s concentrate on

the missing formula. Since we suspected that decrypted block at 401ef0 might be what we’re

looking for, let’s place a breakpoint there and see what happens. Because we have all code statically

decrypted this should present no problem. Executable breaks there without problems, but on the

console we can see bogus output. Hmm… there must be more antidebugs somewhere else, but

hopefully we will be able to trace this function at least.

It starts with call to familiar “trap flag” anti-debug function. Then a bit of integer number crunching.

Some floating point operations and… voila, we have our magic number on top of FP stack.

00401EF0 . 55 push ebp

00401EF1 . 8BEC mov ebp,esp

00401EF3 . 83EC 0C sub esp,0C

00401EF6 . 56 push esi

00401EF7 . 8BF1 mov esi,ecx

00401EF9 . EB 05 jmp short final_or.00401F00

00401EFB . B8 00FFFFFF mov eax,-100

00401F00 > 33C0 xor eax,eax

00401F02 . 8945 F4 mov dword ptr ss:[ebp-C],eax

00401F05 . 8945 F8 mov dword ptr ss:[ebp-8],eax

00401F08 . E8 63FCFFFF call <final_or.anti_trap>

00401F0D . 85C0 test eax,eax

00401F0F . 74 07 je short final_or.00401F18

00401F11 . 6A FF push -1

00401F13 . E8 C1B90000 call <final_or.EXIT>

00401F18 > 8B8E D0000000 mov ecx,dword ptr ds:[esi+D0]

00401F1E . 2B8E C4000000 sub ecx,dword ptr ds:[esi+C4]

00401F24 . 8B86 C0000000 mov eax,dword ptr ds:[esi+C0]

00401F2A . 038E B8000000 add ecx,dword ptr ds:[esi+B8]

00401F30 . 8D1440 lea edx,dword ptr ds:[eax+eax*2]

00401F33 . 8D044A lea eax,dword ptr ds:[edx+ecx*2]

00401F36 . 2B86 CC000000 sub eax,dword ptr ds:[esi+CC]

00401F3C . 8B4E 34 mov ecx,dword ptr ds:[esi+34]

00401F3F . 2B86 BC000000 sub eax,dword ptr ds:[esi+BC]

00401F45 . 0386 C8000000 add eax,dword ptr ds:[esi+C8]

00401F4B . 83F9 01 cmp ecx,1

00401F4E . 8945 FC mov dword ptr ss:[ebp-4],eax

00401F51 . 75 2D jnz short final_or.00401F80

00401F53 . DB45 FC fild dword ptr ss:[ebp-4]

00401F56 . 8BC8 mov ecx,eax

00401F58 . 0FAFC8 imul ecx,eax

00401F5B . DC0D C0844200 fmul qword ptr ds:[4284C0]

00401F61 . DC2D B8844200 fsubr qword ptr ds:[4284B8]

00401F67 . 894D FC mov dword ptr ss:[ebp-4],ecx

00401F6A . DB45 FC fild dword ptr ss:[ebp-4]

00401F6D . DC0D B0844200 fmul qword ptr ds:[4284B0]

00401F73 . DEC1 faddp st(1),st

00401F75 . DB46 30 fild dword ptr ds:[esi+30]

00401F78 . DC0D A8844200 fmul qword ptr ds:[4284A8]

00401F7E . EB 30 jmp short final_or.00401FB0

00401F80 > 83F9 02 cmp ecx,2

00401F83 . 75 30 jnz short final_or.00401FB5

00401F85 . DB45 FC fild dword ptr ss:[ebp-4]

00401F88 . 8BD0 mov edx,eax

00401F8A . 0FAFD0 imul edx,eax

00401F8D . DC0D A0844200 fmul qword ptr ds:[4284A0]

00401F93 . DC2D 98844200 fsubr qword ptr ds:[428498]

00401F99 . 8955 FC mov dword ptr ss:[ebp-4],edx

00401F9C . DB45 FC fild dword ptr ss:[ebp-4]

00401F9F . DC0D 90844200 fmul qword ptr ds:[428490]

00401FA5 . DEC1 faddp st(1),st

00401FA7 . DB46 30 fild dword ptr ds:[esi+30]

00401FAA . DC0D 88844200 fmul qword ptr ds:[428488]

00401FB0 > DEE9 fsubp st(1),st

00401FB2 . DD5D F4 fstp qword ptr ss:[ebp-C]

00401FB5 > DB05 B8EB4200 fild dword ptr ds:[42EBB8]

00401FBB . 8BCE mov ecx,esi

00401FBD . DC75 F4 fdiv qword ptr ss:[ebp-C]

00401FC0 . DC05 B0EB4200 fadd qword ptr ds:[42EBB0]

00401FC6 . DC25 40844200 fsub qword ptr ds:[428440]

00401FCC . DD9E 98000000 fstp qword ptr ds:[esi+98]

00401FD2 . E8 49FEFFFF call final_or.00401E20

00401FD7 . 5E pop esi

00401FD8 . 8BE5 mov esp,ebp

00401FDA . 5D pop ebp

00401FDB . C3 retn

This can be translated to:

double formula(void)

{

 double v2 = 0;

 int v1 = 3*d3 + 2*(d1 - d2 + d4) - d5 - d7 + d8;

 if (d6 == 1) // true in this case

 v2 = g2 - v1 * g1 + v1*v1 * g3 - d9 * g4;

 else

 {

 if (d6 == 2)

 v2 = g9 - v1 * g8 + v1*v1 * g10 - d9 * g11;

 }

 return g5 / v2 + g6 - g7;

}

// these are object data

d1 = 5;

d2 = 4;

d3 = 8;

d4 = 10;

d5 = 10;

d6 = 1;

d7 = 17;

d8 = 6;

d9 = 35;

// these are global variables

g1 = 0.00045719;

g2 = 1.21721;

g3 = 6.7e-07;

g4 = 0.00025696;

g5 = 510;

g6 = 0;

g7 = 485;

// and two local variables

v1 = 25;

v2 = 1.1972054;

x = 510 / 1.1972054 - 485; // -59.007935480411297844129336536571;

Removing the input limit

Now we need to remove input limitation. Using some Zen thinking ;) we can come to conclusion,

that all encrypted code blocks are vital to the task: password protection, the formula… and, input

limit? :) This is indeed true, but author initially took another approach. All global data of

application was visually scanned in IDA in search of 200.0 constant that would be used in a

comparison. Patched executable with all code decrypted was used. “data.txt” string was used to find

rough position of private data. Although “200.0” was not found, another constant was:

.rdata:004284E8 dbl_4284E8 dq 1.9999999e2 ; DATA XREF: _main+50A�r

Seems very interesting. Let’s examine that cross reference:

.text:00402F6A fld ds:dbl_4284E8

.text:00402F70 add esp, 4

.text:00402F73 fcomp [ebp+78h+var_30]

.text:00402F76 fnstsw ax

.text:00402F78 test ah, 5

.text:00402F7B jp short loc_402F8B

.text:00402F7D mov dword ptr [ebp+78h+var_30], 0EB074A77h

.text:00402F84 mov dword ptr [ebp+78h+var_30+4], 4068FFFFh

.text:00402F8B

.text:00402F8B loc_402F8B: ; CODE XREF: _main+51B�j

Magic constants being loaded to a stack variable are 64bit double representation of 199.99999. Do

we need more? ;) We patch jump at 402f7b to unconditional. This results in input limitation being

removed.

Additional notes.

There is a third anti-debug function using int 2d, but it was left alone. Author also found a few

tricks that apparently targeted “cheating” OllyDbg plugins:

- Writing some large value to BeingDebugged PEB flag and reading it again later

- Using Sleep() to verify if GetTickCount returns reasonable values.

Also, initially author used WinDbg in kernel mode on a vmware target to catch all int2d/ trap flag

tricks.

Time to break

In total, about a day was required to achieve all objectives. Finding the password was most time-

consuming initially, it took one evening (about 4-6 hours). After it has been understood how to

enter the password, things got easier. Not all anti-debug protections were found though. Password

algorithm was trivial, computing valid password took few minutes. Decrypting executable was easy,

maybe half an hour for static patch. Decoding formula took about an hour or two, to not make any

mistakes. Finding and patching the input limitation after decryption has been done was also very

easy, it took 30 minutes at most. Most of the time was spent on finding “silent” anti-debug checks

that corrupted data but didn’t kill the program. There was too few of such checks without debugger

though.

	Solving of Hacker Challenge 2007 Phase 3
	Attack Narrative
	Finding the password and the formula
	Removing the input limit

	Time to break

