
Solving of Hacker Challenge 2007 Phase 1
Author: Omega Red (omegared@o2.pl)

Background

Participants will receive a protected Windows binary that produces certain output when run. The

goal of the contest is to achieve the following two objectives:

1. Reverse engineer the mathematical formula that results in the value 10.9319 of the output.

2. Remove the limitation on an input data field of the code so that values greater than 210.5 are

treated the same as values less than 210.5.

The binary is a standard win32 executable. It uses text file data.txt as input. It also requires

correct password.txt file to run, which is not provided. Completing these objectives required a

number of steps:

 Decrypting the binary to allow its static analysis in disassembler.

 Generating correct password.txt file.

 Finding the formula for objective 1.

 Removing the input limitations for objective 2.

Various anti-debugging/anti-tampering methods were analyzed and disabled during all of

these stages. None of them was particularly difficult and the author succeeded in achieving both

objectives in about two days. During analysis author didn't find any surprises or tricks that he wasn't

familiar with already.

Attack Narrative

First analysis

When we first run the executable, it produces following output:

Missing password.txt - We apologize for the inconvenience.

Right, so the executable uses some form of key file protection (or just makes us think it

does ;). Let's make sure.

We will use FileMon - a free utility that can list all file system activity on Windows system.

After setting filter to the name of our executable to not be flooded by logs produced, we can see:

11:06:16 final.exe:2428 IRP_MJ_CREATE C:\hackerchallenge\password.txt FILE NOT

FOUND Attributes: N Options: Open

11:06:16 final.exe:2428 IRP_MJ_CREATE C:\hackerchallenge\password.txt FILE NOT

FOUND Attributes: N Options: Open

OK - it seems that our target really uses key file protection. So, we need to do either of:

 Find out what should be in password.txt file by reverse engineering and create such file that

will pass the check.

 Just modify the binary to disable the file check.

Anyway, we will need to locate and analyze code that performs the check. Let's look at the

file in the direct meaning of this word. We will use any hex editor or just Total Commander's

internal viewer.

We see normal section names (.text .data .rdata .rsrc). No suspicious sections that would

indicate well known executable modifiers. Then most of the file seems to be encrypted - there is

very little 0 bytes, rather uncommon. Encryption must be very weak however, as there are easily

spottable patterns. That indicates some kind of substitution cipher for single bytes, most likely

simple arithmetic operation being used. We'll check that later.

After code section we see some strings from Visual C CRT, unencrypted strings from our

target (Incorrect password - We apologize for the inconvenience.). Then there are some

imports - most notably IsDebuggerPresent. At the end of file we see indication of anti-SoftICE

routines (meltICE) - strings "\\.\SICE" and "\\.\NTICE".

Next step is analyzing executable structure a bit more in detail using PeID. Section viewer

reveals additional section named JR that was not spotted by us earlier. Entry point is located there,

so our hypothesis is that this section decrypts the real code. Quick disassembly of entry point shows

some code obfuscation used:

00428288: EB 00 JMP 0042828A

0042828A: BD FA A4 FD FF MOV EBP,FFFDA4FA

0042828F: E8 00 00 00 00 CALL 00428294

00428294: E8 68 00 00 00 CALL 00428301

00428299: 90 NOP

0042829A: 90 NOP

We'll disassemble it properly later.

Sections have unusual attributes: all are read/write data - clear indication of self-modifying

code. PE header seems to not contain anything unusual except sections, especially there are no TLS

callbacks which could be used to make debugging harder. PEiD's Crypto analyzer shows no signs

of known crypto/hash algorithms, but this can be wrong since code section is encrypted.

Summary

Executable is written in Visual C++. Decryptor and possibly other parts were most likely

hand-coded in assembly. Code section is protected by some weak encryption; data section is most

likely not encrypted. Executable uses various anti-debugging methods that will be analyzed later.

No well-known protectors were used.

Decrypting the executable

We will need to analyze the decryption routine and create unencrypted executable, if

possible, to make later analysis easier. Author used IDA Pro freeware version for this and all static

disassembly analysis.

Entry point of the binary indicates on-purpose obfuscation:

JR:00428288 start proc near

JR:00428288 jmp short $+2

JR:0042828A mov ebp, 0FFFDA4FAh ; EBP set

JR:0042828F call $+5

JR:00428294 call sub_428301

After a few jumps we arrive here:

JR:0042842B loc_42842B: ; CODE XREF: sub_428301+ED�j

JR:0042842B mov edx, ebp

JR:0042842D add edx, 44E508h ; EDX = 00428A02

JR:00428433 mov eax, [edx] ; EAX = 00400000 - image base of the

executable

JR:00428435 call sub_4284B9 ; main decryption routine as we see

later

JR:0042843A jmp loc_428890

JR:0042843A sub_428301 endp

The decryption routine looks like this:

JR:004284B9 sub_4284B9 proc near ; CODE XREF: sub_428301+134�p

JR:004284B9 mov edi, eax ; edi = 00400000

JR:004284BB add edi, [edi+3Ch] ; PE header offset

JR:004284BE mov esi, edi

JR:004284C0 add esi, 0F8h ; start of section table

JR:004284C6 xor edx, edx ; section counter

JR:004284C8 loc_4284C8: ; CODE XREF: sub_4284B9+22C�j

JR:004284C8 push edx

JR:004284C9 push eax ; eax = image base

JR:004284CA db 3Eh ; DS segment override, can be hidden

in IDA analysis options

JR:004284CA cmp dword ptr [esi], 7865742Eh ; 'xet.'

JR:004284D1 jz loc_428598 ; jr_decrypt_code_stub

JR:004284D7 db 3Eh

JR:004284D7 cmp dword ptr [esi], 45444F43h ; 'EDOC'

JR:004284DE jz loc_428598 ; jr_decrypt_code_stub

We see simple "switch" construct to invoke specific functions for various PE sections like

".tex" and "CODE". The code only compares first 4 characters of section name, so we could say it's

buggy. Let's take a look at the actual decryption routine.

JR:00428598 jr_decrypt_code_stub: ; CODE XREF: jr_decrypt+18�j

JR:00428598 ; jr_decrypt+25�j

JR:00428598 cmp dword ptr [esi+14h], 0 ; section RVA

JR:0042859D jz jr_decrypt_nextsection

JR:004285A3 cmp dword ptr [esi+10h], 0 ; section VSize

JR:004285A8 jz jr_decrypt_nextsection

JR:004285AE push esi ; esi & edi are popped after this

'procedure'

JR:004285AF push edi

JR:004285B0 push ecx

JR:004285B1 push ebx

JR:004285B2 mov ecx, [esi+10h] ; ecx = section VSize

JR:004285B6 xor ebx, ebx ; ebx = 0

JR:004285B8 mov esi, [esi+0Ch] ; esi = section RVA

JR:004285BC add esi, eax ; add image base, esi = section VA

JR:004285BE call jr_decrypt_code ; actual decryption takes place there

JR:004285C3 pop ebx

JR:004285C4 pop ecx

JR:004285C5 mov edx, ebp ; FFFDA4FA

JR:004285C7 add edx, 44E1DEh ; edx = 4286D8

JR:004285CD lea eax, [edx]

JR:004285CF push eax ; obfuscated jmp 4286d8

JR:004285CF ; (process next section)

JR:004285D0 retn

Right. The real decryption algorithm can be seen at 0042847C (junk jumps omitted):

JR:0042847C jr_decrypt_code proc near ; CODE XREF: jr_decrypt+105�p

JR:0042847C mov edi, esi ; esi = data pointer

JR:0042847C ; ecx = data size

JR:00428484 lodsb ; al = data byte

JR:00428485 clc

JR:00428486 add al, 10h

JR:00428488 stc

JR:00428492 xor al, 53h

JR:00428494 ror al, 0BDh

JR:00428497 add al, 0AFh

JR:00428499 sub al, 1Fh

JR:004284B0 add al, 0A0h

JR:004284B2 add al, 0Fh

JR:004284B4 nop

JR:004284B5 stosb

JR:004284B6 loop loc_428484

JR:004284B8 retn

JR:004284B8 jr_decrypt_code endp

It can be simplified to (all numbers in hex):
x' = (((x+10) xor 53) ror 5) + 3f

We can see that it's indeed very simple algorithm. Our assumption that it's single byte

substitution was correct.

Procedure that decrypts data section is very similar, only the actual algorithm is different,

involving value of CL register (which is part of the loop counter). A bit more complex, but it's still

very easy to decrypt.

Procedure for 'BSS' section seems to be incomplete:

JR:00428447 lodsb

JR:00428448 add [eax], al

JR:0042844B add [eax], al

JR:0042844E add [eax], al

JR:00428451 add [eax], al

JR:00428454 add [eax], al

...but that's OK - there is no BSS section in our executable. The decryption stub is just a little more

generic. ;)

Same goes for '.ida' and '.eda' decryptors - they are not working/unused. There is also

decryption stub for '.rsr' (resource) section. It seems to parse PE resource directory, but there are no

resources in the executable except the manifest, so it does nothing. It's also written in C/++, unlike

most of the decryptor which seems to be hand-coded assembly.

We can observe decryptor in action under debugger - there is no anti-debugging code there.

Author used OllyDbg for this. We can set breakpoint at 0042843A to have all sections decrypted

(it's the next instruction after decryption routine call). Then it's just a matter of writing them to the

binary and altering PE entry point to 004094B8, where the 'real' execution begins (a few junk jumps

later). We can also use PEiD generic unpacker (using mentioned entry point) - this method was

used by the author as it's most convenient. Decrypted executable is uploaded as

final_decrypted.exe. It also has input limits removed, since this patch was done last.

Passing the password file check

Our target won't run without password.txt with correct content. As mentioned before, we

have two main choices: patching executable to bypass the check, or finding out the correct

password. We will test both approaches.

Finding the check in the code is easiest with IDA - we can find references to "password.txt"

(the file name) or error messages and follow them. We find this:

.text:00406F67 push 1

.text:00406F69 push 40h

.text:00406F6B push 1

.text:00406F6D push offset aPassword_txt ; "password.txt"

.text:00406F72 lea ecx, [ebp+68h+var_220]

.text:00406F78 mov [ebp+68h+var_3B0], offset off_41E204

.text:00406F82 call sub_4065B0

.text:00406F87 cmp [ebp+68h+var_1CC], 0

.text:00406F8E mov [ebp+68h+var_6C], 0

.text:00406F95 jz pwd_open_error

Doesn't it look like a call to "fopen"-type function? Actually it's ifstream constructor or

similar - we see ECX being loaded before function call (object pointer, thiscall convention), and

some strings in the code indicate that it uses C++ streams. But the real deal is just below:

.text:00406F9B push 20h

.text:00406F9D push 3 ; buffer size

.text:00406F9F lea eax, [ebp+68h+buf]

.text:00406FA2 push eax

.text:00406FA3 lea ecx, [ebp+68h+fs_password]

.text:00406FA9 call sub_406410 ; read from file

...

.text:00406FE8 lea edx, [ebp+68h+var_28]

.text:00406FEB push edx ; char *

.text:00406FEC call j__atol ; string to dword

.text:00406FF1 mov ecx, eax ; ecx = x

.text:00406FF3 mov eax, 30C30C31h ;

.text:00406FF8 imul ecx ; edx:eax = (x * 0x30C30C31)

.text:00406FFA sar edx, 3 ; edx = (x * 0x30C30C31) shr

0x23

.text:00406FFD mov eax, edx

.text:00406FFF shr eax, 1Fh ; eax = 0

.text:00407002 add eax, edx ; eax = (x * 0x30C30C31) shr

0x23

.text:00407004 imul eax, 2Ah ; eax = 0x2a * ((x *

0x30C30C31) shr 0x23)

.text:00407007 mov edx, ecx ; edx = x

.text:00407009 add esp, 4

.text:0040700C sub edx, eax ; x = 0x2a * ((x *

0x30C30C31) shr 0x23)

; 0x2a * 0x30C30C31 = 80000000A, so x = 0x2a * (x shr 5)

.text:0040700E jnz short loc_40705E ; "bad boy" jump

.text:00407010 test ecx, ecx

.text:00407012 jz short loc_40705E ; "bad boy" jump

.text:00407014 push offset aThankYou_ ; "Thank you. \n"

.text:00407019 push offset dword_4254F8

.text:0040701E call sub_405F70 ; print-type function

We see a char buffer being converted to number, then some calculations being performed on

it, and finally the "good/bad" jump. So password.txt should contain an integer number in ASCII.

From the calculations performed we can deduct that the final equation being evaluated is x = 0x2a *

(x shr 5), where x is the number read from password.txt. Decomposing right-hand as "0x2a * 1"

gives us first solution: x = 0x2a or 42 decimal. Oh, The Answer to the Ultimate Question of Life,

the Universe, and Everything! Well, other possible solutions are multiplies of 42, but the executable

only reads two decimal digits from password.txt (what can be observed under debugger) - so the set

of correct passwords is just 42 and 84. Trivial solution of 0 is deemed false by the comparison at

00407010.

There is another method to find correct password, after knowing that it's only 2 digits: brute

force. Simple .bat script can test all possible passwords in a second:

@echo off

for /l %%a in (1,1,99) do call :test %%a

goto end

:test

echo %1 > password.txt

final.exe > %1.txt

:end

After browsing generated output files we can see that indeed only 42 and 84 were correct.

This method was used by the author at first.

What about patching? "For educational purposes" author tried to just patch the whole check

by inserting jmp 407014 at 00406F67 (after disabling integrity checks which will be described later).

That didn't work as expected, however - output looked like this:

Thank you.

 1 3 10.9319

 33 17 10 5 6 10 8 4

 21.8638 178.136 1

 1 7 9.02697

 33 17 10 5 6 10 8 4

 18.0539 181.946 1

 9 3 14.8862

 32 14 5 8 12 12 13 8

 17.8634 102.137 2

 11 3 0.

 45 22 6 7 5 12 3 33

 0. 220. 1

After closer inspection of patched code it was clear what went wrong:

.text:00406F5C call calc_init

.text:00406F61 mov esi, global1

.text:00406F67 push 1 ; jmp 407014

.text:00406F69 push 40h

.text:00406F6B push 1

.text:00406F6D push offset aPassword_txt ; "password.txt"

.text:00406F72 lea ecx, [ebp+68h+fs_password] ; stream object

.text:00406F78 mov [ebp+68h+var_3B0], offset off_41E204 ; <- this

instruction was omitted after patching

.text:00406F82 call fsopen

After moving instruction from 00406F78 to 00406F67 and adding "jmp 407014" after,

executable still crashes after printing data. Tracing over with OllyDbg reveals the call that is

responsible for it:

.text:00407649 lea ecx, [ebp-0F4h]

.text:0040764F mov byte ptr [ebp-4], 0

.text:00407653 call sub_404A50

.text:00407658 lea ecx, [ebp-1B8h] ; object pointer

.text:0040765E mov dword ptr [ebp-4], 0FFFFFFFFh

.text:00407665 call sub_404A50 ; this call causes access violation

It's part of the cleanup code, this call is actually a destructor for a stream object that was

used to read password.txt. And since we skipped constructor by our patch:

.text:00406F6D push offset aPassword_txt ; "password.txt"

.text:00406F72 lea ecx, [ebp-1B8h] ; object pointer

...then the destructor tries to delete null object. If we NOP the call at 00407665, executable runs fine

without password.txt. Patched binary that doesn’t require password file to run is uploaded as

final_nopasswd.exe.

Finding algorithm for output calculation (objective 1)

We need to find where all the calculation is taking place. We know that program output

depends on input: contents of data.txt. That's the first attack vector: open up the disassembly in

IDA and search for code that opens data.txt. Here comes the first obstruction: there is no "data.txt"

string found by IDA. Well, we have several other options. We can fire up debugger and trap

CreateFile or ReadFile. But IDA will be sufficient - we already observed at least one instance of

opening and reading file, so we'll search for other references to these functions.

.text:00406F67 push 1

.text:00406F69 push 40h

.text:00406F6B push 1

.text:00406F6D push offset aPassword_txt ; "password.txt"

.text:00406F72 lea ecx, [ebp+68h+obj_stream]

.text:00406F78 mov [ebp+68h+var_3B0], offset off_41E204

.text:00406F82 call fsopen

.text:00406F87 cmp [ebp+68h+var_1CC], 0

.text:00406F8E mov [ebp+68h+var_6C], 0

.text:00406F95 jz pwd_open_error

.text:00406F9B push 20h

.text:00406F9D push 3 ; buffer size

.text:00406F9F lea eax, [ebp+68h+buf]

.text:00406FA2 push eax

.text:00406FA3 lea ecx, [ebp+68h+obj_stream]

.text:00406FA9 call fsread

.text:00406FAE lea ecx, [ebp+68h+var_218]

.text:00406FB4 call fsclose

There are only 2 recognized references to fsopen: one above (password file check) and one

just a bit after that:

.text:0040718A push 1

.text:0040718C push 40h

.text:0040718E push 1

.text:00407190 push offset dword_41E4E0

.text:00407195 lea ecx, [ebp+68h+var_15C]

.text:0040719B call fsopen

There is no plain-text file name here, instead some DWORD reference. IDA must've

misinterpreted it, because after changing interpretation of this "DWORD" to a string all becomes

clear:

.text:00407190 push offset aData_txt ; "data.txt"

.text:00407195 lea ecx, [ebp+68h+var_15C]

.text:0040719B call fsopen

.text:004071A0 cmp [ebp+68h+var_108], 0

.text:004071A7 mov byte ptr [ebp+68h+var_6C], 1

.text:004071AB jz loc_407309

.text:004071B1 push 20h

.text:004071B3 push 3 ; buffer size

.text:004071B5 lea eax, [ebp+68h+var_20]

.text:004071B8 push eax

.text:004071B9 lea ecx, [ebp+68h+var_15C]

.text:004071BF mov [ebp+68h+var_1], 1

.text:004071C3 call fsread

Right, we have it. There is a block of file reads and atol/atof-s. Some calculations, some

prints as well - seems we're in the right place. So all the password checking and calculations seem

to be in one monolithic main function. Let's see what happens after successful password check.

.text:00407014 push offset aThankYou_ ; "Thank you. \n"

.text:00407019 push offset dword_4254F8

.text:0040701E call print

.text:00407023 add esi, 0FFFFFFFBh ; there is

.text:00407023 ; mov esi, dword_423068

.text:00407023 ; before

.text:00407026 mov dword_423068, esi

.text:0040702C mov esi, ds:GetTickCount

.text:00407032 add esp, 8

.text:00407035 call esi ; GetTickCount

.text:00407037 mov edi, eax ; EDI = tick count at the start

Here we see one of the anti-debug tricks, or the start of it. Current tick count (millisecond

counter) is stored in EDI. It will be later compared to current tick count, and if elapsed time is

greater than some threshold, code assumes that it's run under debugger (manual tracing/single

stepping is much slower than normal execution).

Countermeasures: patching GetTickCount to always return 0 or another small number;

changing the comparison code; using specialized OllyDbg plugin (like OllyAdvanced).

.text:00407039 mov eax, large fs:30h ; PEB

.text:0040703F movzx eax, byte ptr [eax+2] ; BOOL BeingDebugged

.text:00407043 or al, al

.text:00407045 jz short loc_407050

Another anti-debug trick. FS:30 is a Thread Environment Block field that holds pointer to

Process Environment Block. And PEB:3 is a boolean flag that indicates if a process is being

debugged.

Countermeasures: patching PEB:BeinDebugged field to 0; changing the comparison code;

using specialized OllyDbg plugin (like OllyAdvanced).

.text:00407047 jmp short $+2

.text:00407049 mov eax, 1

.text:0040704E jmp short loc_407052

.text:00407050 ;

¦¦¦

.text:00407050

.text:00407050 loc_407050: ; CODE XREF: _main+115�j

.text:00407050 xor eax, eax

.text:00407052

.text:00407052 loc_407052: ; CODE XREF: _main+11E�j

.text:00407052 nop

.text:00407053 test al, al

.text:00407055 jz short loc_407077

.text:00407057 push 0FFFFFFFFh ; uExitCode

.text:00407059 call exit

.text:0040705E ;

¦¦¦

.text:0040705E

.text:0040705E bad_boy: ; CODE XREF: _main+DE�j

.text:0040705E ; _main+E2�j

.text:0040705E push offset aIncorrectPassw ; "Incorrect password - We

apologize for t"...

.text:00407063 push offset dword_4254F8

.text:00407068 call print

.text:0040706D add esp, 8

.text:00407070 push 0 ; uExitCode

.text:00407072 call exit

.text:00407077 ;

¦¦¦

.text:00407077

.text:00407077 loc_407077: ; CODE XREF: _main+125�j

.text:00407077 call ds:IsDebuggerPresent

.text:0040707D test eax, eax

.text:0040707F jz short loc_407088

.text:00407081 push 0FFFFFFFEh ; uExitCode

.text:00407083 call exit

Another trick: this is essentially the same as the previous one; it just uses API function to get

the BeingDebugged flag.

Countermeasures: patching PEB:BeinDebugged field to 0; patching IsDebuggerPresent to always

return 0; changing the comparison code; using specialized OllyDbg plugin (like OllyAdvanced).

...some calculations...

.text:0040711B call esi ; GetTickCount

.text:0040711D sub eax, edi

.text:0040711F cmp eax, 7D0h

.text:00407124 jbe short loc_40712D

.text:00407126 push 0FFFFFFFCh ; uExitCode

.text:00407128 call exit

.text:0040712D ;

¦¦¦

.text:0040712D

.text:0040712D loc_40712D: ; CODE XREF: _main+1F4�j

.text:0040712D lea eax, [ebp+68h+var_68]

That's the second part of GetTickCount trick. We can see exit being called if elapsed time is

too long.

Well, we have found the approximate location of code that does all the calculations, but we

need the exact algorithm. Probably the easiest method will be "reverse engineering" in the literal

meaning of the phrase: pinpoint the moment when the values are printed and then "go backwards"

in code flow.

When looking at the code in IDA we see a bunch or prints as noted earlier:

.text:0040744D push eax

.text:0040744E call print

.text:00407453 add esp, 8

.text:00407456 push eax

.text:00407457 call print ; This prints 10.9319

.text:0040745C add esp, 8

"This prints 10.9319" note can be verified under debugger. Backtracking a bit more we see:

.text:0040737E call sub_401740

.text:00407383 cmp eax, 0D81DB55Ch

.text:00407388 jz short loc_4073C4

Does this ring a bell? Well, it should - sub_401740 is a simple integrity check returning a

checksum that is compared to "good" value just after the call. It can be subverted by making it to

always return good value; modifying compared value so that it matches modified image; or just

eliminating the call and compare altogether. We will patch the jump at 00407388 to be

unconditional. On failed check we see some cleanup and return from main:

.text:0040738A lea ecx, [ebp+68h+fs_data]

.text:00407390 mov byte ptr [ebp+68h+var_6C], 0

.text:00407394 call fsdelete

.text:00407399 lea ecx, [ebp+68h+fs_password]

.text:0040739F mov [ebp+68h+var_6C], 0FFFFFFFFh

.text:004073A6 call fsdelete

.text:004073AB mov eax, 1

.text:004073B0 mov ecx, [ebp+68h+var_74]

.text:004073B3 mov large fs:0, ecx

.text:004073BA pop edi

.text:004073BB pop esi

.text:004073BC pop ebx

.text:004073BD add ebp, 68h

.text:004073C0 mov esp, ebp

.text:004073C2 pop ebp

.text:004073C3 retn

.text:004073C4 ;

¦¦¦

If the integrity check succeeds, our mysterious value is calculated; it can be easily spotted by

tracing under debugger and observing FPU registers.

.text:004073C4 loc_4073C4: ; CODE XREF: _main+458�j

.text:004073C4 mov eax, [ebp+68h+obj_calc]

.text:004073CA mov edx, [eax]

.text:004073CC lea ecx, [ebp+68h+obj_calc] ; "this" pointer

.text:004073D2 call edx

.text:004073D4 fld [ebp+68h+var_250] ; loads 10.9319

.text:004073DA lea eax, [ebp+68h+print_buf]

.text:004073E0 push eax ; char *

.text:004073E1 push 6 ; int

.text:004073E3 sub esp, 8 ; double

.text:004073E6 fstp qword ptr [esp]

.text:004073E9 call __gcvt ; float to string

We're closer now. Let's see where the call edx goes. It's a method of some object and we

see no parameters passed on stack. The method uses only global variables and object data members.

.text:00401290 calc proc near ; DATA XREF: .rdata:off_41E204�o

.text:00401290

.text:00401290 var_4 = dword ptr -4

.text:00401290

.text:00401290 push ecx

.text:00401291 push ebx

.text:00401292 push esi

.text:00401293 push edi

.text:00401294 mov edi, ds:GetTickCount ; "tick count" trick again...

.text:0040129A mov esi, ecx ; object pointer

.text:0040129C call edi ; GetTickCount

.text:0040129E mov ebx, eax

.text:004012A0 call DebuggerCheck ; this is just copy of

IsDebuggerPresent

.text:004012A5 test al, al

.text:004012A7 jz short loc_4012B0

.text:004012A9 sub global9, 1 ; corrupt data if debugger

detected

.text:004012B0

.text:004012B0 loc_4012B0: ; CODE XREF: calc+17�j

.text:004012B0 call ds:IsDebuggerPresent

.text:004012B6 test eax, eax

.text:004012B8 jz short loc_4012C1

.text:004012BA add global8, 1 ; corrupt data if debugger

detected

.text:004012C1

.text:004012C1 loc_4012C1: ; CODE XREF: calc+28�j

.text:004012C1 call edi ; GetTickCount

.text:004012C3 sub eax, ebx

.text:004012C5 cmp eax, 7D0h ; tick count check

.text:004012CA jbe short loc_4012D8

.text:004012CC fld ds:dbl_41E228 ; corrupt data if debugger

detected

.text:004012D2 fstp global6

.text:004012D8

.text:004012D8 loc_4012D8: ; CODE XREF: calc+3A�j

 ; the real calculations begin

.text:004012D8 mov eax, [esi+0C0h] ; 8 (data1)

.text:004012DE fild global1 ; 495

; This is interesting - the value starts as 500, but it's 495 at runtime. By looking at

cross references in IDA we can find where it is modified - at 00407023, just after "Thank

you" message and successful key file check.

.text:004012E4 add eax, [esi+0BCh] ; 17 (data2)

.text:004012EA pop edi

.text:004012EB add eax, [esi+0B8h] ; 10 (data3)

.text:004012F1 mov ecx, eax

.text:004012F3 imul ecx, eax

.text:004012F6 mov [esp+0Ch+var_4], eax

.text:004012FA fild [esp+0Ch+var_4] ; 35

.text:004012FE mov [esp+0Ch+var_4], ecx

.text:00401302 fmul ds:global2 ; 8.267e-4

.text:00401308 fsubr ds:global3 ; 1.10938

.text:0040130E fild [esp+0Ch+var_4]

.text:00401312 fmul ds:global4 ; 1.6e-6

.text:00401318 faddp st(1), st

.text:0040131A fild dword ptr [esi+30h] ; 33 (data 4)

.text:0040131D fmul ds:global5 ; 2.574e-4

.text:00401323 fsubp st(1), st

.text:00401325 fdivp st(1), st

.text:00401327 fadd global6 ; 0.0

.text:0040132D fsub ds:global7 ; 4.5e2

.text:00401333 fst qword ptr [esi+98h] ; result (data5)

; some calculations not directly related to our value follow

.text:00401339 mov edx, dword_423070 ; 10

.text:0040133F imul edx, dword_42306C ; 10

.text:00401346 mov [esp+0Ch+var_4], edx

.text:0040134A fild [esp+0Ch+var_4]

.text:0040134E fdivp st(1), st

.text:00401350 fmul qword ptr [esi+28h]

.text:00401353 fst qword ptr [esi+0A8h]

.text:00401359 fsubr qword ptr [esi+28h]

.text:0040135C fstp qword ptr [esi+0A0h]

.text:00401362 pop esi

.text:00401363 pop ebx

.text:00401364 pop ecx

.text:00401365 retn

.text:00401365 calc endp

So, the final formula that produces given value is:

10.9319224036473 = g1 / (x*x*g4 + g3 - x*g2 - d4*g5) + g6 - g7

where
x = d1+d2+d3

(d means object data, g means global variable)

d1=8, d2=17, d3=10, d4=33

g1=495, g2=8.267e-4, g3=1.10938, g4=1.6e-6, g5=2.574e-4, g6=0, g7=4.5e2

It can be found in formula.txt file.

Removing the input limitations (objective 2)

We need to change one value in data.txt from 210.5 to 220. This should result in values

24.2433 and 195.757 being printed. We will start with changing data.txt to see what happens when

binary is unmodified. Result: values printed are unchanged. Right, let's go down to the code and

find where the binary reads input from data.txt.

.text:00407227 push 20h

.text:00407229 push 3

.text:0040722B lea eax, [ebp+68h+inbuf7]

.text:0040722E push eax

.text:0040722F lea ecx, [ebp+68h+fs_data]

.text:00407235 call fsread

.text:0040723A push 20h

.text:0040723C push 6 ; buffer size

.text:0040723E lea ecx, [ebp+68h+inbuf8] ; this reads "210.5"

.text:00407241 push ecx

.text:00407242 lea ecx, [ebp+68h+fs_data]

.text:00407248 call fsread

.text:0040724D push 20h

.text:0040724F push 3

.text:00407251 lea edx, [ebp+68h+inbuf9]

.text:00407254 push edx

.text:00407255 lea ecx, [ebp+68h+fs_data]

Nothing interesting so far, let's look down at the code that converts strings to numbers.

.text:004072CC lea edx, [ebp+68h+inbuf8]

.text:004072CF push edx ; char *

.text:004072D0 mov [ebp+68h+x7], eax

.text:004072D3 call _atof ; convert x8

.text:004072D8 fstp [ebp+68h+x8]

.text:004072DB lea eax, [ebp+68h+inbuf9]

.text:004072DE push eax ; char *

.text:004072DF call j__atol

.text:004072E4 lea ecx, [ebp+68h+inbuf10]

.text:004072E7 push ecx ; char *

.text:004072E8 mov [ebp+68h+x9], eax

.text:004072EB call j__atol

.text:004072F0 fld ds:dbl_41E4D8 ; 210.5

.text:004072F6 fld [ebp+68h+x8] ; x8 - the value we need to change

.text:004072F9 add esp, 28h

.text:004072FC fcom st(1) ; compare

.text:004072FE fnstsw ax

.text:00407300 test ah, 41h ; test for c0 & c3 FPU status bits

.text:00407303 jnz short loc_40730D ; x8 <= 210.5

 ; this jump will be patched to unconditional

.text:00407305 fstp st ; out of range? replace x8 with 210.5

.text:00407305 ; 210.5 -> st

.text:00407307 jmp short loc_40730F ; continue

.text:00407309 ;

¦¦¦

.text:00407309

.text:00407309 loc_407309: ; CODE XREF: _main+27B�j

.text:00407309 xor bl, bl

.text:0040730B jmp short loc_40737E

.text:0040730D ;

¦¦¦

.text:0040730D

.text:0040730D loc_40730D: ; CODE XREF: _main+3D3�j

.text:0040730D fstp st(1)

.text:0040730F

.text:0040730F loc_40730F: ; CODE XREF: _main+3D7�j

Bingo. After conversion we see a simple check that compares x8 to 210.5, and if it's larger,

replaces it with 210.5. We can skip it by NOP-ing or inserting short jmp over the check, or changing

dbl_41E4D8 value to 220 or more. We'll just patch the conditional jump. We also need to patch the

checksum routine mentioned earlier to prevent application from detecting our changes.

After removing the limit we'll check how the program behaves. Here's the output of

modified binary with modified data.txt:

Thank you.

 1 3 10.9319

 33 17 10 5 6 10 8 4

 21.8638 178.136 1

 1 7 9.02697

 33 17 10 5 6 10 8 4

 18.0539 181.946 1

 9 3 14.8862

 32 14 5 8 12 12 13 8

 17.8634 102.137 2

 11 3 14.1597

 45 22 6 7 5 12 3 33

 31.1513 188.849 1

We see that this time last values changed - but they are incorrect. There must be some other

check in the code after. It's enough to just browse disassembly from where we left off to see:

.text:004075FA lea edx, [ebp+68h+var_550]

.text:00407600 push edx

.text:00407601 call calc2

.text:00407606 lea eax, [ebp+68h+var_478]

.text:0040760C push eax

.text:0040760D call calc2

.text:00407612 add esp, 8

.text:00407615 call sub_401700 ; second checksum routine

.text:0040761A cmp eax, 507AB3F7h

.text:0040761F jz short loc_40762D ; checksum ok?

.text:00407621 fld ds:dbl_41E4C8

.text:00407627 fstp global6 ; corrupt data if checksum invalid

.text:0040762D

.text:0040762D loc_40762D: ; CODE XREF: _main+6EF�j

.text:0040762D test bl, bl

.text:0040762F jz short loc_40763A

.text:00407631 lea ecx, [ebp+68h+var_3B0]

.text:00407637 push ecx

.text:00407638 jmp short loc_407641

.text:0040763A ;

¦¦¦

.text:0040763A

.text:0040763A loc_40763A: ; CODE XREF: _main+6FF�j

.text:0040763A lea edx, [ebp+68h+obj_calc]

.text:00407640 push edx

.text:00407641

.text:00407641 loc_407641: ; CODE XREF: _main+708�j

.text:00407641 call calc2

It's pretty obvious that we found it. sub_401700 looks just like the previous one:

.text:00401700 checksum2 proc near ; CODE XREF: _main+6E5�p

.text:00401700 push ebx

.text:00401701 push esi

.text:00401702 mov eax, ds:40003Ch

.text:00401707 mov esi, [eax+400104h]

.text:0040170D mov ecx, [eax+400108h]

.text:00401713 add esi, 400000h

.text:00401719 add esi, 637Bh

.text:0040171F mov ecx, 10h

.text:00401724 shr ecx, 2

.text:00401727 xor ebx, ebx

.text:00401729

.text:00401729 loc_401729: ; CODE XREF: checksum2+2E�j

.text:00401729 lodsd

.text:0040172A rol ebx, cl

.text:0040172C xor ebx, eax

.text:0040172E loop loc_401729

.text:00401730 mov eax, ebx

.text:00401732 pop esi

.text:00401733 pop ebx

.text:00401734 retn

.text:00401734 checksum2 endp

That's the thing. We need to patch it just like the previous one to avoid tampering detection.

Jump at 0040761F was chosen for the simplicity. After applying modification, output of the binary

is finally correct:

Thank you.

 1 3 10.9319

 33 17 10 5 6 10 8 4

 21.8638 178.136 1

 1 7 9.02697

 33 17 10 5 6 10 8 4

 18.0539 181.946 1

 9 3 14.8862

 32 14 5 8 12 12 13 8

 17.8634 102.137 2

 11 3 11.0197

 45 22 6 7 5 12 3 33

 24.2433 195.757 1

In total, 3 bytes were needed to be modified in the unencrypted binary. It is possible to patch

encrypted binary by reverse-engineering encryption formulas, but the author didn't have time to do

it. Patched binary is uploaded as final_modified.exe.

Time to break

In total, achieving both objectives took about two days. All protections used were very easy

to bypass, so there haven’t been any real problems. Encryption was quite simple and easy to revert.

Understanding the formula was more time-consuming, but still wasn’t hard. Author didn't have

much experience with FPU, so some searching on the Internet was needed to accommodate for this.

Removing input limits didn’t prove complicated either. “Attack narrative” part of the report was

written in parallel with actual reverse engineering, so it reflects actual steps done to defeat

protections of the executable and achieve both objectives.

Tools used

All of the tools used were "industry standard" for any win32 reverse engineer. They will be

listed in order of importance.

 IDA Pro - hands down the best disassembler for Windows. Automatic code flow analysis,

cross-references, and of course the ability to hand-tune the disassembly are invaluable.

Signatures that allow recognition of compiler-generated code were a great help as well.

 OllyDbg - one of the best, if not the best, user-mode debugger for Windows. Chosen for

ease od use, auto analysis capabilities, many plugins available (OllyAdvanced was used to

circumvent IsDebuggerPresent and GetTickCount tricks).

 calc - standard Windows utility, great for quick calculations, verification or dec/hex

conversion.

 PEiD - popular executable identifier, able to detect many packers/protectors and show

information about PE header. Chosen for its built-in generic unpacker.

 Filemon - one of many Sysinternals utilities. Great for analyzing any file system activity.

 Hex Workshop - pretty good hex editor, used for quick review and patching the binary.

Script written: brute.bat, batch file that tries all possible password files.

@echo off

for /l %%a in (1,1,99) do call :test %%a

goto end

:test

echo %1 > password.txt

final.exe > %1.txt

:end

Conclusion

 The executable was successfully reverse engineered, its protections broken and functionality

changed. Overall, protection methods used were very week and easy to bypass. It should be noted,

though, that choosing C++ as the language and using object-oriented features raised the difficulty a

bit. IDA, for example, didn’t automatically recognize all stream functions used.

Decryption was pretty straightforward - junk jumps/calls were the only obstruction there,

and the decryptor was easy to follow. One could just set one breakpoint to get the decrypted image,

and then decrypt/dump the binary automatically with a tool like PEiD generic unpacker.

Passing the password check was also easy: after finding out that the password is a two-digit

number, it's straightforward to brute-force it. The author started with that, writing a batch file that

checked all possibilities. Then, it was also easy to follow calculations done on the number and

derive a formula that gives correct passwords.

IsDebuggerPresent and GetTickCount anti-debug tricks were detected and recognized

immediately when spotted in IDA disassembly or under debugger. Direct checks for BeingDebugged

flag were generally easy to spot, as they were very close to the other ones. Most difficult to find

(but still easy overall) were the checksum comparisons. For the first time program just shut down

after making some modifications or setting breakpoints - that was indicating, that there is some

integrity check. Method used to track it down was a breakpoint on ExitProcess and backtrack from

there. This allowed finding the "good/bad" jumps, and then checksum procedure. The second

integrity check corrupted data producing incorrect output if the checksum didn't match - it was

spotted by manual disassembly browsing.

Anti-SoftICE protection which was mentioned at the beginning of this report was not

actually found. On-access breakpoints on the suspicious strings were never triggered. Author didn’t

use SoftICE and didn’t investigate it further, but it seems that there is no real protection of this kind

in the binary.

 What could be done to improve the protection? Well, many things, but let’s focus on

protection techniques that are already present in the binary.

Encryption

 Obfuscate the decryptor more

 Use anti-debugging tricks

 Use more sophisticated algorithm

 Don’t decrypt the whole image, instead re-encrypt code that is no longer used

Password file

 Use larger password (that was the main weakness)

 Use binary file

 Better protect from totally skipping the check

Formula protection

 Use more obfuscation

 Use more sophisticated anti-debugging techniques

 Use code virtualization ;)

Anti-tamper protection

 Use more sophisticated integrity checks

 Don’t do “good/bad” jumps after check since it can be just patched – use the checksum

value in data processing instead

 Cross-check the checksum procedures with each other

	Solving of Hacker Challenge 2007 Phase 1
	Background
	Attack Narrative
	First analysis
	Decrypting the executable
	Passing the password file check
	Finding algorithm for output calculation (objective 1)
	Removing the input limitations (objective 2)

	Time to break
	Tools used
	Conclusion

